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Figure 1. We present HOLODIFFUSION as the first 3D-aware generative diffusion model that produces 3D-consistent images and is
trained with only posed image supervision. Here we show a few different samples generated from models trained on different classes of
the CO3D dataset [50].

Abstract

Diffusion models have emerged as the best approach for
generative modeling of 2D images. Part of their success is
due to the possibility of training them on millions if not bil-
lions of images with a stable learning objective. However,
extending these models to 3D remains difficult for two rea-
sons. First, finding a large quantity of 3D training data is
much more complex than for 2D images. Second, while it is
conceptually trivial to extend the models to operate on 3D
rather than 2D grids, the associated cubic growth in mem-
ory and compute complexity makes this infeasible. We ad-
dress the first challenge by introducing a new diffusion setup
that can be trained, end-to-end, with only posed 2D images
for supervision; and the second challenge by proposing an
image formation model that decouples model memory from
spatial memory. We evaluate our method on real-world
data, using the CO3D dataset which has not been used to
train 3D generative models before. We show that our dif-
fusion models are scalable, train robustly, and are compet-
itive in terms of sample quality and fidelity to existing ap-
proaches for 3D generative modeling.

1. Introduction

Diffusion models have rapidly emerged as formidable
generative models for images, replacing others (e.g., VAEs,
GANs) for a range of applications, including image col-
orization [51], image editing [39], and image synthesis [9,
23]. These models explicitly optimize the likelihood of the
training samples, can be trained on millions if not billions
of images, and have been shown to capture the underlying
model distribution better [9] than previous alternatives.

A natural next step is to bring diffusion models to 3D
data. Compared to 2D images, 3D models facilitate di-
rect manipulation of the generated content, result in perfect
view consistency across different cameras, and allow object
placement using direct handles. However, learning 3D dif-
fusion models is hindered by the lack of a sufficient volume
of 3D data for training. A further question is the choice
of representation for the 3D data itself (e.g., voxels, point
clouds, meshes, occupancy grids, etc.). Researchers have
proposed 3D-aware diffusion models for point clouds [37],
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volumetric shape data using wavelet features [24] and novel
view synthesis [66]. They have also proposed to distill a
pretrained 2D diffusion model to generate neural radiance
fields of 3D objects [34, 49]. However, a diffusion-based
3D generator model trained using only 2D image for super-
vision is not available yet.

In this paper, we contribute HOLODIFFUSION, the first
unconditional 3D diffusion model that can be trained with
only real posed 2D images. By posed, we mean different
views of the same object with known cameras, for example,
obtained by means of structure from motion [53].

We make two main technical contributions: (i) We pro-
pose a new 3D model that uses a hybrid explicit-implicit
feature grid. The grid can be rendered to produce images
from any desired viewpoint and, since the features are de-
fined in 3D space, the rendered images are consistent across
different viewpoints. Compared to utilizing an explicit den-
sity grid, the feature representation allows for a lower res-
olution grid. The latter leads to an easier estimation of the
probability density due to a smaller number of variables.
Furthermore, the resolution of the grid can be decoupled
from the resolution of the rendered images. (ii) We design
a new diffusion method that can learn a distribution over
such 3D feature grids while only using 2D images for su-
pervision. Specifically, we first generate intermediate 3D-
aware features conditioned only on the input posed images.
Then, following the standard diffusion model learning, we
add noise to this intermediate representation and train a de-
noising 3D UNet to remove the noise. We apply the denois-
ing loss as photometric error between the rendered images
and the Ground-Truth training images. The key advantage
of this approach is that it enables training of the 3D diffu-
sion model from 2D images, which are abundant, sidestep-
ping the difficult problem of procuring a huge dataset of 3D
models for training.

We train and evaluate our method on the Co3Dv2 [50]
dataset where HOLODIFFUSION outperforms existing alter-
natives both qualitatively and quantitatively.

2. Related Work

2.1. Image-conditioned 3D Reconstruction

Neural and differentiable rendering. Neural render-
ing [60] is a class of algorithms that partially or entirely use
neural networks to approximate the light transport equation.

The 2D versions of neural rendering include variants
of pix2pix [25], deferred neural rendering [61], and their
follow-up works. The common theme in all these meth-
ods is that a post-processor neural network (usually a CNN)
maps neural feature images into photorealistic RGB images.

The 3D versions of neural rendering have recently been
popularized by NeRF [40], which uses a Multi Layer Per-
ceptron (MLP) to model the parameters of the 3D scene

(radiance and occupancy) and a physically-based render-
ing procedure (Emission-Absorption raymarching). NeRF
solves the inverse rendering problem where, given many 2D
images of a scene, the aim is to recover its 3D shape and ap-
pearance. The success of NeRF gave rise to many follow-up
works [1,2,40,63,73]. While NeRF uses MLPs to represent
the occupancy and radiance of the underlying scene, differ-
ent representations were explored in [7,14,29,35,42,59,64,
71].
Few-view reconstruction. In many cases, dense image
supervision is unavailable, and one has to condition the
reconstruction on a small number of scene views instead.
Since 3D reconstruction from few-views is ambiguous, re-
cent methods aid the reconstruction with 3D priors learned
by observing many images of an object category. Works
like CMR [27], C3DM [47], and UMR [33] learn to predict
the parameters of a mesh by observing images of individual
examples of the object category. DOVE [68] also predicts
meshes, but additionally leverages stronger constraints pro-
vided by videos of the deformable objects.

Others [19, 72] aimed at learning to fit NeRF given only
a small number of views; they do so by sampling im-
age features at the 2D projections of the 3D ray samples.
Later works [50, 65] have improved this formulation by us-
ing transformers to process the sampled features. Finally,
ViewFormer [32] drops the rendering model and learns a
fully implicit transformer-based new-view synthesizer. Re-
cently, BANMo [70] reconstructed deformable objects with
a signed distance function.

2.2. 3D Generative Models

3D Generative advesarial networks. Early 3D genera-
tive models leveraged adversarial learning [13] as the pri-
mary form of supervision. PlatonicGAN [18] learns to
generate colored 3D shapes from an unstructured corpus
of images belonging to the same category, by rendering a
voxel grid from random viewpoints so that an adversarial
discriminator cannot distinguish between the renders and
natural images sampled from a large uncurated database.
PrGAN [10] differs from PlatonicGAN by focusing only
on rendering untextured 3D shapes. To deal with the large
memory footprint of voxels, HoloGAN [43] adjusts Platon-
icGAN by rendering a low-resolution 2D feature image of a
coarse voxel grid, followed by a 2D convolutional decoder
mapping the feature render to the final RGB image. The
results are, however, not consistent with camera motion.

Inspired by the success of NeRF [41], GRAF [54] also
trains in a data setting similar to PlatonicGAN [18] but,
differently from PlatonicGAN, represents each generated
scene with a neural radiance field. The GRAF pipeline was
subsequently improved by PiGAN [6], leveraging a SIREN-
based [56] architecture. Similar to HoloGAN, StyleN-
erf [15] first renders a radiance feature field followed by



Figure 2. Method overview. Our HOLODIFFUSION takes as input video frames for category-specific videos {si} and trains a diffusion-
based generative model Dθ . The model is trained with only posed image supervision {(Iij , P i

j )}, without access to 3D ground-truth. Once
trained, the model can generate view-consistent results from novel camera locations. Please refer to Sec. 3 for details.

a convolutional super-resolution network. EG3D [5] fur-
ther improves the pipeline by initially decoding a randomly
sampled latent vector to a tri-plane representation followed
by a NeRF-style rendering of a radiance field supported
by the tri-plane. EpiGRAF [57] further improves upon the
triplane-based 3D generation. GAUDI [3] also uses the tri-
plane while building upon DeVries et. al. [8] which used a
single plane representing the floor map of the indoor room
scenes being generated.

Besides radiance fields, other shape representations have
also been explored. While VoxGRAF [55] replaces the radi-
ance field of GRAF with a sparse voxel grid, StyleSDF [48]
employs signed distance fields, and Neural Volumes [35]
propose a novel trilinearly-warped voxel grid. Wu et al. [69]
differentiably render meshes and aid the adversarial learn-
ing with a set of constraints exploiting symmetry proper-
ties of the reconstructed categories. Recently, GET3D [11]
differentiably converts an initial tri-plane representation to
colored mesh, which is finally rendered.

The aforementioned approaches are trained solely by ob-
serving uncurated category-centric image collections with-
out the need for any explicit 3D supervision in form of the
ground truth 3D shape or camera pose. However, since
the rendering function is non-smooth under camera mo-
tion, these methods can either successfully reconstruct im-
age databases with a very small variation in camera poses
(e.g., fronto-parallel scenes such as portrait photos of cat
or human faces) or datasets with a well-defined distribution
of camera intrinsics end extrinsics (e.g., synthetic datasets).
We tackle the pose estimation problem by leveraging a
dataset of category-centric videos each containing multiple
views of the same object. Observing each object from a
moving vantage point allows for estimating accurate scene-

consistent camera poses that provide strong constraints.
While most approaches focus on generating shapes of

isolated instances of object categories, GIRAFFE [46] and
BlockGAN [44] extend GRAF and HoloGAN to reconstruct
compositions of objects and their background. Alterna-
tive approaches focus on text-conditioned 3D shape gener-
ation [3,26,49], or learn [28] a generative model by observ-
ing a single self-similar scene.
3D diffusion models. Diffusion models for 3D shape
learning have been explored only very recently. Luo et
al. [38] use full 3D supervision to learn a generative dif-
fusion model of point clouds. In a concurrent effort, Wat-
son et al. [67] learns a new-view synthesis function which,
conditioned on a posed image of a scene, generates a new
view of the scene from a specified target viewpoint. Differ-
ently from us, [67] do not employ an explicit image forma-
tion model which may lead to geometrical inconsistencies
between generated viewpoints.

3. HOLODIFFUSION

We start by discussing the necessary background and no-
tation on diffusion models in Sec. 3.1, and then we intro-
duce our method in Sec. 3.2, Sec. 3.3, and Sec. 3.4.

3.1. Diffusion Models

Given N i.i.d. samples {xi}Ni=1 from (an unknown) data
distribution p(x), the task of generative modeling is to find
the parameters θ of a parametric model pθ(x) that best ap-
proximate p(x). Diffusion models are a class of likelihood-
based models centered on the idea of defining a forward
diffusion (noising) process q(xt|xt−1), for t ∈ [0, T ]. The
noising process converts the data samples into pure noise,



i.e., q(xT ) ≈ q(xT |xT−1) = N (0, I). The model then
learns the reverse process p(xt−1|xt), which iteratively con-
verts the noise samples back into data samples starting from
the purely Gaussian sample xT .

The Denoising Diffusion Probabilistic Model
(DDPM) [22], in particular, defines the noising transi-
tions using a Gaussian distribution, setting

q(xt|xt−1) := N (xt;
√
αtxt−1, (1− αt)I). (1)

Samples can be easily drawn from this distribution by using
the reparameterization trick:

xt :=
√
αtxt−1 +

√
1− αtϵ where ϵ ∼ N (0, I). (2)

One similarly defines the reverse denoising step using a
Gaussian distribution:

pθ(xt−1|xt) := N (xt−1;
√
αtDθ(xt, t), (1− αt)I), (3)

where, the Dθ is the denoising network with learned param-
eters θ. The sequence αt defines the noise schedule as:

αt = 1− βt, βt ∈ [0, 1], s.t. βt > βt−1∀t ∈ [0, T ].
(4)

We use a linear time schedule with T = 1000 steps.
The denoising must be applied iteratively for sampling

the target distribution p(x). However, for training the model
we can draw samples xt directly from q(xt|x0) as:

xt =
√
ᾱtx0 +

√
1− ᾱtϵ where, ᾱt =

t∏
i=0

αi. (5)

It is common to use the network Dθ(xt, t) to predict the
noise component ϵ instead of the signal component xt−1

in eq. (2); which has the interpretation of modeling the
score of the marginal distribution q(xt) up to a scaled con-
stant [22, 36]. Instead, we employ the “x0-formulation”
from eq. (3), which has recently been explored in the con-
text of diffusion model distillation [52] and modeling of
text-conditioned videos using diffusion [21]. The reason-
ing behind this design choice will become apparent later.
Training. Training the “x0-formulation” of a diffusion
model Dθ comprises minimizing the following loss:

L = ∥Dθ(xt, t)− x0∥2, (6)

encouraging Dθ to denoise sample xt ∼ N (
√
ᾱtx0, (1 −

ᾱt)I) to predict the clean sample x0.
Sampling. Once the denoising network Dθ is trained,
sampling can be done by first starting with pure noise, i.e.,
xT ∼ N (0, I), and then iteratively refining T times using
the network Dθ, which terminates with a sample from target
data distribution x0 ∼ q(x0) = p(x):

xt−1 ∼ N (
√
ᾱt−1Dθ(xt, t), (1− ᾱt−1)I). (7)

3.2. Learning 3D Categories by Watching Videos

Training data. The input to our learning procedure is
a dataset of N ∈ N video sequences {si}Ni=1, each de-
picting an instance of the same object category (e.g., car,
carrot, teddy bear). Each video si = (Iij , P

i
j )

Nframes
j=1 com-

prises Nframes pairs (Iij , P
i
j ), each consisting of an RGB

image Iij ∈ R3×H×W and its corresponding camera pose
P i
j ∈ R4×4, represented as a 4× 4 camera matrix.

Our goal is to train a generative model p(V ) where V is
a representation of the shape and appearance of a 3D object;
furthermore, we aim to learn this distribution using only the
2D training videos {si}Ni=1.

3D feature grids. As 3D representation V we pick 3D
feature voxel grids V ∈ RdV ×S×S×S of size S ∈ N con-
taining dV -dimensional latent feature vectors. Given the
voxel grid V representing the object from a certain video
s, we can reconstruct any frame (Ij , Pj) ∈ s of the video
as Ij = rζ(V, Pj) by the means of the rendering function
rζ(V, Pj) : RdV ×S×S×S×R4×4 7→ R3×H×W , where ζ are
the function parameters (see Sec. 3.4 for details).

Next, we discuss how to build a diffusion model for the
distribution p(V ) of feature grids. One might attempt to
directly apply the methodology of Sec. 3.1, setting x = V ,
but this does not work because we have no access to ground-
truth feature grids V for training; instead, these 3D models
must be inferred from the available 2D videos while train-
ing. We solve this problem in the next section.

3.3. Bootstrapped Latent Diffusion Model

In this section, we show how to learn the distribution
p(V ) of feature grids from the training videos s alone. In
what follows, we use the symbol V as a shorthand for p(V ).

The training videos provide RGB images I and their cor-
responding camera poses P , but no sample feature grids V
from the target distribution V . As a consequence, we also
have no access to the noised samples Vt ∼ N (

√
ᾱtV0, (1−

ᾱt)I) required to evaluate the denoising objective eq. (6)
and thus learn a diffusion model.

To solve this issue, we introduce the BLDM (Boot-
strapped Latent Diffusion Model). BLDM can learn the
denoiser-cum-generator Dθ given samples V̄ ∼ V̄ from
an auxiliary distribution V̄ , which is closely related but not
identical to the target distribution V .

The auxiliary samples V̄ . As shown in fig. 2, our idea is
to obtain the auxiliary samples V̄ as a (learnable) function
of the corresponding training videos s. To this end, we use a
design strongly inspired by Warp-Conditioned-Embedding
(WCE) [19], which demonstrated compelling performance
for learning 3D object categories. Specifically, given a
training video s containing frames Ij , we generate a grid
V̄ ∈ RdV ×S×S×S of auxiliary features V̄:mno ∈ [−1, 1]dV



by projecting the 3D coordinate xV
mno of the each grid el-

ement (m,n, o) to every video frame Ij , sampling corre-
sponding 2D image features, and aggregating those into a
single dV -dimensional descriptor per grid element. The 2D
image features are extracted by a trainable encoder (we use
the ResNet-32 encoder [17]) E. This process is detailed in
the supplementary material.
Auxiliary denoising diffusion objective. The standard
denoising diffusion loss eq. (6) is unavailable in our case
because the data samples V are unavailable. Instead, we
leverage the “x0-formulation” of diffusion to employ an al-
ternative diffusion objective which does not require knowl-
edge of V . Specifically, we replace eq. (6) with a photomet-
ric loss

Lphoto := ∥rζ(Dθ(V̄t, t), Pj)− Ij∥2, (8)

which compares the rendering rζ(Dθ(V̄t, t), Pj) of the de-
noising Dθ(V̄t, t) of the noised auxiliary grid V̄t to the
(known) image Ij with pose Pj . Equation (8) can be com-
puted because the image Ij and camera parameters Pj are
known and V̄t is derived from the auxiliary sample V̄ ,
whose computation is given in the previous section.
Train/test denoising discrepancy. Our denoiser Dθ takes
as input a sample V̄t from the noised auxiliary distribution
V̄t instead of the noised target distribution Vt. While this
allows to learn the denoising model by minimizing eq. (8),
it prevents us from drawing samples from the model at test
time. This is because, during training, Dθ learns to denoise
the auxiliary samples V̄ ∈ V̄ (obtained through fusing im-
age features into a voxel-grid), but at test time we need in-
stead to draw target samples V ∈ V as specified by eq. (7)
per sampling step. We address this problem by using a boot-
strapping technique that we describe next.
Two-pass diffusion bootstrapping. In order to remove
the discrepancy between the training and testing sample dis-
tributions for the denoiser Dθ, we first use the latter to ob-
tain ‘clean’ voxel grids from the training videos during an
initial denoising phase, and then apply a diffusion process
to those, finetuning Dθ as a result.

Our bootstrapping procedure rests on the assumption that
once Lphoto is minimized, the denoisings Dθ(V̄t, t) of the
auxiliary grids V̄ ∼ V̄ follow the clean data distribution V ,
i.e., Dθ⋆(V̄t, t) ∼ V for the optimal denoiser parameters θ⋆

that minimize Lphoto. Simply put, the denoiser Dθ learns
to denoise both the diffusion noise and the noise resulting
from imperfect reconstructions. Note that our assumption
Dθ⋆(V̄t, t) ∼ V is reasonable since recent single-scene neu-
ral rendering methods [7, 35, 41] have demonstrated suc-
cessful recovery of high-quality 3D shapes solely by op-
timizing the photometric loss via differentiable rendering.

Given that Dθ⋆ is now capable of generating clean data
samples, we can expose it to the noised version of the clean

samples V by executing a second denoising pass in a re-
current manner. To this end, we define the bootstrapped
photometric loss L′

photo:

L′
photo := ∥rζ(Dθ(ϵt′(Dθ(V̄t, t), t

′), Pj)− Ij∥2 (9)

with ϵt′(Z) ∼ N (
√
ᾱt′Z, (1 − ᾱt′)I) denoting the dif-

fusion of input grid Z at time t′. Intuitively, eq. (9)
evaluates the photometric error between the ground truth
image I and the rendering of the doubly-denoised grid
Dθ(ϵt′(Dθ(V̄t, t), t

′)).

3.4. Implementation Details

Training details. HOLODIFFUSION training finds the op-
timal model parameters θ, ζ by minimizing the sum of
the photometric and the bootstrapped photometric losses
Lphoto + L′

photo using the Adam optimizer with an initial
learning rate 5 · 10−5 (decaying ten-fold whenever the total
loss plateaus) until convergence is reached.

In each training iteration, we randomly sample 10 source
views {Ij} from a randomly selected training video si to
form the grid of auxiliary features V̄ . The auxiliary features
are noised to form V̄t and later denoised with Dθ(V̄t). After-
wards Dθ(V̄t) is noised and denoised again during the two-
pass bootstrap procedure. To avoid two rendering passes in
each training iteration (one for Lphoto and the second for
L′

photo), we randomly choose to optimize the L′
photo with

50-50 probability in each iteration as a lazy regularization.
The photometric losses compare renders rζ(·, Pj) of the de-
noised voxel grid to 3 target views (different from the source
views).
Rendering function rζ . The differentiable rendering
function rζ(V, Pj) from eqs. (8) and (9) uses Emission-
Absorption (EA) ray marching as follows. First, given the
knowledge of the camera parameters Pj , a ray ru ∈ S2 is
emitted from each pixel u ∈ {0, . . . ,H−1}×{0, . . . ,W−
1} of the rendered image Îj ∈ R3×H×W . We sample NS

3D points (pi)
NS
i=1 on each ray at regular intervals ∆ ∈ R.

For each point pi, we sample the corresponding voxel grid
feature V [pi] ∈ RdV

, where V [·] stands for trilinear inter-
polation. The feature V [pi] is then decoded by an MLP as
fζ(V [pi], ru) := (σi, ci) with parameters ζ to obtain the
density σi ∈ [0, 1] and the RGB color ci ∈ [0, 1]3 of each
3D point. The MLP f is designed so that the color c de-
pends on the ray direction ru while the density σ does not,
similar to NeRF [40]. Finally, EA ray marching renders the
ru’s pixel color cru =

∑NS

i=1 w(pi)ci as a weighted com-
bination of the sampled colors. The weights are defined as
w(pi) = Ti − Ti+1 where Ti = e−

∑i−1
1 σi∆.

4. Experiments
In this section, we evaluate our method. First we perform

the quantitative evaluation and then follow it by visualizing
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Figure 3. View consistency. Evaluation of the consistency of the shape renders under camera motion. While our results (top) remain
consistent, pi-GAN [6]’s results (bottom) suffer from significant appearance variations across view changes.

samples for assessing the quality of generations.

Datasets and baselines. For our experiments, we use
CO3Dv2 [50], which is currently the largest available
dataset of fly-around real-life videos of object categories.
The dataset contains videos of different object categories
and each video makes a complete circle around the ob-
ject, showing all sides of it. Furthermore, camera poses
and object foreground masks are provided with the dataset
(they were obtained by the authors by running off-the-shelf
Structure-from-Motion and instance segmentation software,
respectively).

We consider the four categories Apple, Hydrant,
TeddyBear and Donut for our experiments. For each
of the categories we train a single model on the 500 “train”
videos (i.e. approx. 500×100 frames in total) with the high-
est camera cloud quality score, as defined in the CO3Dv2
annotations, in order to ensure clean ground-truth camera
pose information. We note that all trainings were done on
2-to-8 V100 32GB GPUs for 2 weeks.

We consider the prior works pi-GAN [6], EG3D [5], and
GET3D [11] as baselines for comparison. Pi-GAN gener-
ates radiance fields represented by MLPs and is trained us-
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Figure 4. Comparisons. Samples generated by our HOLODIFFUSION compared to those by pi-GAN, EG3D, and GET3D.

ing an adversarial objective. Similar to our setting, they
only use 2D image supervision for training. EG3D [5] uses
the feature triplane, decoded by an MLP as the underlying
representation, while needing both the images and the cam-
era poses as input to the training procedure. GET3D [11]
is another GAN-based baseline, which also requires the
images and camera poses for training. Apart from this,
GET3D also requires the fg/bg masks for training; which
we supply in form of the masks available in CO3Dv2. Since
GET3D applies a Deformable Marching Tetrahedra step in
the pipeline, the samples generated by them are in the form
of textured meshes.

Quantitative evaluation. We report Frechet Inception
Distance (FID) [20], and Kernel Inception Distance
(KID) [4] for assessing the generative quality of our results.
As shown in Table 1, our HOLODIFFUSION produces bet-
ter scores than EG3D and GET3D. Although pi-GAN gets
better scores than ours on some categories, we note that the
3D-agnostic training procedure of pi-GAN cannot recover
the proper 3D structure of the unaligned shapes of CO3Dv2.
Thus, without the 3D-view consistency, the 3D neural fields

(MLPs) produced by pi-GAN essentially mimic a 2D image
GAN.
Qualitative evaluation. Figure 4 depicts random sam-
ples generated from all the methods under comparison.
HOLODIFFUSION produces the most appealing, consistent
and realistic samples among all. Figure 3 further analyzes
the viewpoint consistency of pi-GAN compared to ours. It
is evident that, although individual views of pi-GAN sam-
ples look realistic, their appearance is inconsistent with the
change of viewpoint. Please refer to the project webpage
for more examples and videos of the generated samples.

5. Conclusion
We have presented HOLODIFFUSION, an unconditional

3D-consistent generative diffusion model that can be trained
using only posed-image supervision. At the core of our
method is a learnable rendering module that is trained in
conjunction with the diffusion denoiser, which operates di-
rectly in the feature space. Furthermore, we use a pretrained
feature encoder to decouple the cubic volumetric memory
complexity from the final image rendering resolution. We



Table 1. Quantitative evaluation. FID and KID on 4 classes of CO3Dv2 comparing our HOLODIFFUSION with the baselines pi-
GAN [6], EG3D [5], GET3D [11], and the non-bootstrapped version of our HOLODIFFUSION. The column “VP” denotes whether renders
of a method are 3D view-consistent or not.

method VP Apple Hydrant TeddyBear Donut Mean

FID ↓ KID ↓ FID ↓ KID ↓ FID ↓ KID ↓ FID ↓ KID ↓ FID ↓ KID ↓

pi-GAN [6] ✕ 49.3 0.042 92.1 0.080 125.8 0.118 99.4 0.069 91.7 0.077
EG3D [5] ✓ 170.5 0.203 229.5 0.253 236.1 0.239 222.3 0.237 214.6 0.233
GET3D [11] ✓ 179.1 0.190 303.3 0.380 244.5 0.280 209.9 0.230 234.2 0.270
HOLODIFFUSION (No bootstrap) ✓ 342.9 0.400 277.9 0.305 222.1 0.217 272.1 0.199 278.7 0.280
HOLODIFFUSION ✓ 94.5 0.095 100.5 0.079 109.2 0.106 115.4 0.085 104.9 0.091

time t
1000 750 500 250 0

Figure 5. Sampling across time. Rendering of HOLODIFFUSION’s iterative sampling process for a hydrant and a teddy bear. The
diffusion time decreases from left (t = T = 1000) to the right (t = 0).

demonstrate that the method can be trained on raw posed
image sets, even in the few-image setting, striking a good
balance between quality and diversity of results.

At present, our method requires access to camera infor-
mation at training time. One possibility is to jointly train a
viewpoint estimator to pose the input images, but the chal-
lenge may be to train this module from scratch as the input
view distribution is unlikely to be uniform [45]. An obvi-
ous next challenge would be to test the setup for conditional
generation, either based on images (i.e., single view recon-
struction task) or using text guidance. Beyond generation,
we would also like to support editing the generated repre-
sentations, both in terms of shape and appearance, and com-
pose them together towards scene generation. Finally, we
want to explore multi-class training where diffusion models,
unlike their GAN counterparts, are known to excel without
suffering from mode collapse.

6. Societal Impact

Our method primarily contributes towards the generative
modeling of 3D real-captured assets. Thus as is the case
with 2D generative models, ours is also prone to misuse of
generated synthetic media. In the context of synthetically
generated images, our method could potentially be used to
make fake 3D view-consistent GIFs or videos. Since we
only train our models on the virtually harmless Co3D (Com-
mon objects in 3D) dataset, our released models could not
be directly used to infer potentially malicious samples.

As diffusion models can be prone to memorizing the
training data in limited data settings [58], our models can
also be used to recover the original training samples. Ana-
lyzing the severity and the extent to which our models suffer
from this, is an interesting future direction for exploration.
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HOLODIFFUSION: Training a 3D Diffusion Model using 2D Images

Supplementary material

A. Views2Voxel-grid Unprojection Mechanism
Given a training video s containing frames Ij , we gener-

ate a grid V̄ ∈ RdV ×S×S×S of auxiliary features V̄:mno ∈
[−1, 1]dV by using the following procedure. We first project
the 3D coordinate xV

mno of each grid element (m,n, o) to
every video frame Ij and sample corresponding 2D image
features. The 2D image features f j

mno are obtained using
a ResNet32 [16] encoder E(Ij). We use bilinear interpo-
lation for sampling continuous values and use zero-features
for projected points that lie outside the Image. Thus, we
obtain Nframes features (corresponding to each frame in the
video) for each grid element of the voxel-grid. We accu-
mulate these features using the Accumulator MLP Aacc.
The accumulator Aacc takes as input [f j

mno; v
j ], where [; ]

denotes concatenation and vj corresponds to the viewing
direction corresponding to the camera center of jth frame,
and outputs [σj

mno; f
′j
mno]. Finally, we compute the feature

at each of the voxel grid centers as a weighted sum of the
newly mapped features:

Fmno =
∑
j

σj
mnof

′j
mno. (10)

B. Implementation Details
In this section, we provide more details related to imple-

menting our proposed method.

B.1. Network Architectures

Our proposed pipeline (Fig 2. of main paper) contains
three neural components: The Encoder, Diffusion UNet and
Renderer. The Encoder network is a ResNet32 model [16].
For the main diffusion network, we use a 3D variant of
the UNet used by Dhariwal and Nichol [9]. The model
comprises residual blocks containing downsampling, up-
sampling, and self-attention blocks (with additive residual
connections).

B.2. Renderer

In order to decode the generated voxel-grid of features
into density and radiance fields, we use a NeRF-like [40]
MLP (Multi-layer perceptron). The MLP contains 4 layers
of 256 hidden units with a skip-connection on the 3rd hid-
den layer. The skip connection concatenates the input fea-
tures with the intermediate hidden layer features. Similar to
NeRF, and for the reasons described in Zhang et al. [73], we

Figure I. Architecture of the RenderMLP used for decoding the
features of the generated voxel grids into density and radiance
fields.

also input the view-directions at a latter layer in the MLP.
The input features are not encoded, but we apply sinusoidal
encodings [40,62] to the input viewing directions with max
frequency level L = 4. The activation functions used are:
LeakyReLU for the hidden layers, Softplus for the den-
sity output head, and the Sigmoid for the radiance output
head. All trainable weights are initialized using the Xavier
uniform initialization [12]. Figure I shows the detailed ar-
chitecture of the RenderMLP.

B.3. Training Details

We train the full HOLODIFFUSION pipeline for 1000
epochs over the dataset containing the object-centric videos.
During training, we randomly sample 11 source views for
unprojecting into the initial voxel-grid, and 1 target (re-
served) novel view for computing loss. The latter enforces
3D structure in the generated samples. We use L2 dis-
tance between the rendered views and the G.T. views as
the photometric-consistency loss. In terms of hardware,
we train all our models on 4-8 32GB-V100 GPUs, with a
batch-size equal to the number of GPUs in use, i.e.,
each GPU processes one voxel-grid during training. We use
Adam [31] optimizer with a learning rate (α) of 0.00005 and
default values of β1, β2, and ϵ for all the trainable networks
during training.



B.4. Diffusion Details

We use the DDPM [22] diffusion-formulation for our
bootstrap-latent-diffusion module as described in section
4.2 of the main paper. We use the default t = 1000
time-steps and the default βt schedule in our experiments:
wherein we set β0 = 0.0001;β999 = 0.02. Rest of the βt

values are obtained by linearly interpolating between the β0

and β999. Finally, to improve the input conditioning of our
diffusion module, we apply tanh to the voxel features to
constrain their values in the range of [-1, 1], as proposed in
Karras et al. [30]. This allows us to apply [-1, 1] clipping
during sampling.
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